到了2013年,对暗物质和暗能量的探寻以及对宇宙的起源和进化的研究,成了21世纪的天文学和物理学的发展方向。华裔物理学家、诺贝尔奖获得者李政道博士曾经说过,对于20世纪末和21世纪初的物理学界来说,暗物质是一团最大的疑云,对它的研究代表着物理学将发生一次新的革命。
2013年4月3日,日内瓦的欧洲核子研究中心传出了关于暗物质的好消息。诺贝尔奖获得者丁肇中教授宣布,他带领的科学家团队在经过长达18年的研究后产生了第一个实验结果,这将是人类在探寻暗物质道路上的一个重要里程碑。利用阿尔法磁谱仪,丁肇中团队发现了40万个正电子。正电子是一种反物质,它和暗物质是有区别的。但是这些正电子有可能来自同一个地方,那就是脉冲星或者是暗物质。这个实验结果让人类对物理学和天文学有了全新的认识和理解,让人们对这个研究项目的下一个结果有了更多的期待,因为这一结果可能会确定暗物质的真实存在。
半个月之后,美国物理学会发表研究报告,表示他们通过实验发现了大质量弱相互作用粒子的较强信号,这意味着他们可能发现了暗物质,概率达到99.8%。一年之后的4月18日,来自中国的丁肇中团队在日内瓦召开了成果发布会,公布了最新研究成果,认为暗物质可能是宇宙射线中存在的大量正电子的来源。在之前的研究中,科学家们认为暗物质具有6个特征,而这一实验结果已经确认了其中的5个。
在距离地球38亿光年的地方,有一个被称作子弹星系团的暗物质星系团。科学家们可以通过对这个星系团的研究来分析暗物质对其他物质造成的不可见的影响。这个子弹星系团是两个星系团发生碰撞造成的结果,普通的宇宙物质在碰撞中损失了能量,运动的速度变得缓慢。但是与此同时,暗物质之间彼此穿过,产生的相互作用几乎可以忽略不计。
科学家们利用大视场太空望远镜,能够发现亮度低于14星等的矮星,这些矮星的质量还不到太阳的一半。根据太阳在银河系中的位置,我们能够计算出这些M型矮星的数量,进而得出这些矮星的质量能够达到银河系尚未被观测到的质量的一半。而且因为这些矮星能够持续发光几万年,所以科学家们推测,银河系中有很多类似的恒星在生命结束后留下无法被观测到的残骸,它们的质量就相当于理论上计算出的暗物质的质量。
美国的一些科学家应用了一种最新的理论,认为在地球与月球之间存在着大量未知的暗物质。这种理论能够解释一些航天器的异常现象。人类发射的太空探测器脱离地球轨道进入太空的加速过程中,几乎所有的探测器都发生过一些怪异的现象,如飞行的速率会无端发生变化。按照万有引力定律,这些现象是不应该发生的。一些科学家就此推测,这些异常现象代表着我们现在掌握的物理定律是存在问题的,万有引力定律和爱因斯坦的广义相对论都有缺陷。

德国科学家约尔格·迪特里希和他的团队在一个名为“阿伯尔222/223”的超级星系团中发现了暗物质成分。这个星系团距离地球27亿光年,其中的丝状物中含有暗物质。丝状物的引力让光产生了偏移,利用这种偏移,迪特里希团队的科学家计算出了星系团中的丝状物具有的质量。由普通物质发出的X射线能够得出,这些物质组成了这些丝状物的一部分,但是只占其中10%的质量。余下的大部分物质,有极大的可能性是暗物质。迪特里希认为,这些丝状物构成了宇宙中的暗物质网络,将星系团彼此连接在一起。
当今流行的暗物质理论认为,暗物质或许是一种大质量弱相互作用粒子,这些粒子的质量比组成普通物质的粒子质量更大。并且因为它们无法参与电磁力作用,所以运动的速度很慢。这些大质量弱相互作用粒子可能存在一些反粒子。当两个这样的粒子发生碰撞时,就会发生湮灭现象,并且释放出γ射线。这个理论能够解释为什么银河的核心地区发出了令人出乎意料的γ射线。美国宇航局的费米太空望远镜发现了这一现象。费米太空望远镜属于美国宇航局,是一台γ射线望远镜,主要被用来观测银河系中的高能粒子活跃区。美国科学家霍普和他的团队在使用费米太空望远镜对银河系中心进行观测时,发现了一些高能死亡信号。
霍普团队是在分析了费米望远镜两年多的观测数据之后发现这些信号的,这些信号由一些暗物质粒子的碰撞产生。发生碰撞的暗物质粒子的质量大约是质子的9倍。霍普认为,这些粒子的质量比科学家们之前推测的结果要轻,但是人们同样认为,这些暗物质粒子的质量不是固定的,而是在一个范围内存在区别。这些信号是从银河系中心的一个直径约为100光年的区域发出的,这里被霍普认为是暗物质的理想聚集地,所以受到了严密的关注。在银河系的这个区域中的暗物质密度比边缘地带的暗物质密度大10万倍。
所以我们也可以这样认为:银河系的中心存在大量暗物质,它们彼此相撞,并释放出能量。尽管美国费米实验室的科学家克雷格·霍甘并未参加这个研究项目,但是他依然感到十分兴奋。他认为,这项研究开创了历史,第一个利用简单的粒子模型把与暗物质有关的证据都联系在了一起。尽管还没有取得足够的数据,但是仍然值得我们深入研究。
迈克尔·特纳是来自芝加哥大学的科学家,他是暗物质研究领域的专家。他认为,相干锗中微子技术等深埋地下的探测器可能为霍普的研究提供一定的帮助。在霍普开展研究的同时,还有其他一些暗物质的实验也在同步进行,而且都很有希望取得成果。特纳表示,目前是研究暗物质的黄金时期,所有的探测器都在进行正确的观测,相信科学家即将解决关于暗物质的很多疑问。他还表示,对大质量弱相互作用粒子的研究将成为物理学发展的未来。通过利用大型粒子对撞机来批量制造大质量弱相互作用粒子,我们将逐渐弄清楚暗物质的真面目。
科学家们使用大口径天文望远镜对一些矮星系进行研究后,通过对观测结果进行分析,证明在这些矮星系外有很多大质量暗晕。科学家们通过大量的观测和多达7000次的计算得出结论,这些矮星系具有的暗物质质量相当于普通物质的400多倍。除此之外,我们还能够发现,星系中的粒子都在进行高速运动,且温度很高,能够达到10000摄氏度。科学家们还发现,普通物质与暗物质之间存在着很大的差别。
尽管这些物质具有很高的温度,但是奇怪的是这样的高温并没有带来辐射。据这一研究的领导者杰里·吉尔莫推测,暗物质可能并非由质子和中子组成。在这之前,科学家们曾经认为组成暗物质的粒子运动速度十分缓慢,而且这些粒子的温度不高。
科学家们表示,通过对暗物质的观测和研究,他们发现宇宙中最小的暗物质聚集体也有1000光年的规模,这样一个暗物质片段能够达到太阳质量的30倍之多。科学家们还提出了暗物质的密度假设,如果说地球上每立方厘米空间内有1000多个粒子,那么同样的空间能容纳的暗物质粒子只是这一数量的三分之一左右。研究表明,在宇宙中,一些暗物质和它们相邻的星系有着密切的关系。这些星系通常只有少量恒星,但是整个星系的质量却远大于其中的恒星的质量。
但是在更小的尺度上,不一致的情况就出现了。这种情况在几年前已经开始显现,并且因为这种不一致,让一些科学家提出了质疑,他们认为现行的理论可能存在错误。多数科学家认为,这种不一致可能是因为我们对暗物质提出了不正确的假设,但是理论的模型本身可能并没有错误。
因为从大尺度上来说,引力是最主要的因素,所有的计算都是在万有引力定律和广义相对论的范畴内进行的。但是当尺度变小时,计算中就必须包含高温高密物质的流体力学。而且,在一个大的尺度上,具有微小的涨落幅度,我们能够精确地计算出这些涨落。
但是当尺度缩小到星系的范围时,普通物质与辐射之间有相当复杂的作用。这些星系中的暗晕的数量与质量是成反比的,所以我们应该能够看到由于这些暗物质晕的影响而造成的引力透镜效果。但是在实际观测中,我们没有发现这种现象。而且在其他星系中,围绕星系的暗物质与星系合并在一起之后,会让本来较薄的星系盘增厚。
在星系的核心区,暗物质晕的密度应该出现大幅的增长,就是说,离星系的中心越近,暗物质的密度上升得越剧烈,但是这和我们实际观测到的很多星系的中心区发生的情况并不相符。
科学家们在引力透镜的相关研究中发现,星系团中心的密度比根据大质量暗物质模型计算得出的结果要低。在普通的螺旋星系中,中心区的暗物质密度要比之前预估的更小。在一些表面亮度较低的星系中,也存在着类似的情况。根据流体力学模拟的星系盘,它的尺度与实际观测的结果相比要小得多。很多表面亮度较高的星系中都存在棒状结构,要想保持这个结构的稳定,那么星系的核心密度就要比通过模型得出的值更小。