物理学家在20世纪60年代确定了这个现象,但没有人观测到它。在冷点被发现后,天文学家,例如夏威夷大学的伊斯特万•斯扎普迪(Istvan Szapudi),开始搜寻这种名为萨克斯•瓦福效应(ISW)行为的证据,2008年他找到了。
斯扎普迪无法鉴别单个空洞在宇宙微波背景辐射里留下的印记——他没有相应的数据。因此,他和研究小组寻找了对100个空洞和星系群进行统计分析里的整体ISW效应,这些引力作用会产生温暖效应从而在宇宙微波背景辐射里留下热点。研究人员找到了一个真实的ISW效应,将宇宙微波背景辐射的温度平均改变了10微开尔文。
与冷点相比——大约比宇宙微波背景辐射平均温度冷却70微开尔文——这种效应非常小。但它显示了空洞可以创造冷点。如果一个空洞足够大,它最终可以创造冷点。“如果这个冷点是宇宙微波背景辐射里最大的异常现象,它可能是一个巨大空洞——宇宙里非常罕见的空洞——的迹象。” 斯扎普迪说道。“所以我认为现在我们应该寻找他。”
2010年他的第一次尝试以失败告终。应用的数据非常有限,只覆盖了冷点里少数几个点。有趣的是,结果还显示了不到30亿光年远的距离可能存在一个空洞。
去年他和他的研究小组再次尝试,这次使用了更多数据,覆盖了比之前多200倍的天空,并包含了整个冷点。这么大的覆盖面——包含了上千个星系——早期的暗示合并形成了一个真实空洞。数据非常明确。“我们绝对确定存在一个空洞。”这个空洞非常巨大,它的半径是220百万秒差距(220 megaparsecs),超过7亿光年,是宇宙里不是最大,也是最大之一的物理结构。
这样一个巨大空洞并不常见,目前存在的可能也寥寥无几。斯扎普迪说道。这样罕见空洞与冷点重合,这样的罕见不太可能是巧合。更可能的解释是这个空洞产生了冷点。事实上,他计算出这种情景的可能性大约比两个物体恰好重合的概率高2万倍。
但是其他人对此并不完全信服,例如西班牙坎塔布里亚大学的帕特里西奥•韦尔瓦(Patricio Vielva),这位在2004年带领发现了冷点的科学家认为空洞的稀有性仍有待商榷。如果发现这类空洞其实广泛存在,那么两者重合就不那么令人惊奇了。也许这仅仅是个巧合,这也是科学家需要更多数据来判断超级空洞有多罕见的原因。“现在,我认为最重要的事情之一是确定它,” 韦尔瓦说道。
事实上,还存在一个更大的问题。
超空洞无法让宇宙微波背景辐射变得足够冷。这样体积的超空洞只能使宇宙微波背景辐射冷却20微开尔文。然而,冷点的温度平均要低了70微开尔文。在某些区域温度降幅甚至达到140微开尔文。
这种差异背后的一个可能原因是,空洞实际上比测量的还要大。如果事实的确如此,那么它的ISW效应就会更强。考虑到斯扎普迪测量结果的不确定性,空洞的半径可能会延伸到270百万秒差距。韦尔瓦称,即便如此, 空洞也无法解释冷点的产生。