在图中,我们会发现I和IV这两个的宇宙在中间点上是相连的,这个点其实就是史瓦西虫洞,可以把两个宇宙连接起来。事实上,它也把四个时空全部连接了起来。

这种虫洞就是爱因斯坦和他的同事纳森·罗森最早提出的,所以在当时他们把它称为爱因斯坦一罗森桥。它在镶嵌图中是下面右图的样子,其实可以说是一个黑洞的内部与一个白洞的内部相连所形成的时空结构。所以说,史瓦西虫洞应该是单向的,也就是说虫洞的一端任何物质只进不出,另一端只出不进。

这是一个不稳定的虫洞
那么,我们能否利用史瓦西虫洞,从我们的宇宙跑到另外一端的宇宙呢?可惜,这是不可能的。上世纪60年代,美国物理学家约翰·惠勒和他的同事发现,这种类型的虫洞是不稳定的,存在的瞬间转瞬即逝,
任何物质包括光都来不及从一个宇宙中穿过虫洞并抵达另一个宇宙。
下页图中表示了史瓦西虫洞的隧道的变化过程。形成前只是两个分离的黑洞和白洞,形成虫洞后瞬间又变成黑洞和白洞。在图中可以看出,任何尝试穿过虫洞的东西都不可能从另一端出来,它最终都会在虫洞关闭之后撞到奇点上。
史瓦西虫洞的一个洞口像黑洞,另一个的洞口像白洞。事实上,对于一个外面的观察者来说,虫洞的一个洞口与真正的黑洞看上去是一模一样的。也许宇宙中的那些黑洞内部会形成短暂的史瓦西虫洞。

现在让我们来想象一下如果你从洞口进人虫洞会是什么样子。开始进人洞口的过程与进人一个黑洞类似,当你穿过事件视界之后,如果你没有被潮汐力撕碎的话,你可以看到洞口的中间有扭曲的图像,这是从虫洞另一端发射过来的光线。下面的图则简要地表示了这种情况。

图中图像是虫洞这边的星空图,左边的是虫洞另一边的星空图。虽然你可以看见虫洞另一侧的景色,但很可惜你无法抵达那里。因为史瓦西虫洞是不稳定的,在你还没有反应过来的时候,虫洞就关闭了,你之后会撞倒在虫洞关闭后形成的奇点上。

史瓦西虫洞转瞬即逝,任何物质都无法穿过它。
那么有没有办法使得史瓦西虫洞稳定下来呢?美国物理学家基普·索恩找到了~种办法,尽管看上去不可思议。
稳定而可穿行的虫洞

一个可穿行的虫洞应该满足下面几个条件:
1)虫洞是稳定的,或者至少可以存在很长时问,而不能像史瓦西虫洞那样,还没等物质传过去,它就关闭了;
2)虫洞内部不含有事件视界,这样物质才可以自由地双向穿行;
3)穿过虫洞得在有限时间内完成。
另外,如果人要驾驶宇宙飞船穿过虫洞,虫洞内部潮汐力的加速度得足够小,至少得小于人体所能承受的加速度(大约相当于重力加速度的10倍)。1988年,索恩和他的学生麦克·莫里斯详细地探讨了这种虫洞。根据爱因斯坦的引力方程,他们发现这种虫洞如果存在的话,其内部必须存在平均能量密度为负数的物质(下面把它称为“奇异物质”)。
这种奇异物质并不是十分的古怪,事实上我们在实验室中就可以产生它。例如,真空中彼此平行的两片金属板之间将会存在一种吸引力。因为真空并不是真的空,而是充满了能量的涨落。能量的涨落会产生虚粒子,不过金属板之间只能装下特定波长的虚粒子,这样就会导致金属板之间的真空能量比其他正常空间里的能量低。真空是平均能量为零的空间,这样金属板的空间就是平均能量为负的空间了。金属板之间的物质就可以认为是具有负能量的奇异物质。如果这样的奇异物质贯穿到虫洞之中,虫洞就有足够的时间保持开放状态让物质通过。
在高维世界打开虫洞
虽然我们可以利用金属板之间产生一些奇异物质,但那是十分稀少的。而要撑开虫洞,则需要很多奇异物质。撑开一个半径为1厘米的虫洞,需要相当于一个地球质量的奇异物质;撑开一个半径为1千米的虫洞,需要相当于一个太阳质量的奇异物质;撑开一个半径为1光年的虫洞,需要大约银河系发光物质总质量100倍的奇异物质。另外,如果能让一艘载人宇宙飞船穿过的话,虫洞内部的潮汐力引起的加速度不能太大。经过计算发现,人类能承受的虫洞,其半径至少要大于1光年。
我们完全不知道如何产生那么多的奇异物质。看来,利用奇异物质来打开虫洞并进行星际旅行,难度巨大。
不过换一个角度来想,可穿行的虫洞真的必须要有奇异物质吗?
在2002年,一些物理学家发现,高斯一波涅引力理论下的虫洞可以不需要奇异物质就可以保持打开状态,甚至它可以不需要任何物质就可以保持打开。高斯一波涅引力理论其实是一种把高维空间加人到广义相对论中的理论,它把我们的世界描述为一个四维时空的岛,或者一种“膜”,漂浮在更高维的时空中。而虫洞则可以把不同的“膜”世界连接起来,而且它不需要任何物质就可以稳定地存在。